Exercise C.1.5
Prove the identity
$$ \binom{n}{k} = \frac{n}{k}\binom{n-1}{k-1}$$
for $0 < k \le n$.
$$ \binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n}{k}\frac{(n-1)!}{(k-1)!(n-1-(k-1))!} = \frac{n}{k}\binom{n-1}{k-1}$$
Prove the identity
$$ \binom{n}{k} = \frac{n}{k}\binom{n-1}{k-1}$$
for $0 < k \le n$.
$$ \binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n}{k}\frac{(n-1)!}{(k-1)!(n-1-(k-1))!} = \frac{n}{k}\binom{n-1}{k-1}$$