Exercise 14.1.7
Show how to use an order-statistic tree to count the number of inversions (see Problem 2-4) in an array of size $n$ in time $\O(n \lg n)$.
We can use one simple trick!
We create a new tree, and insert the elements from the array in reverse; that is, we insert the last element first, then the element before the last, and so on. If the array is sorted, we expect each new node to have rank 1, as it will be the minimal node in the tree. If it doesn't, it means that there are $node.rank - 1$ elements in the array that are after $node.key$, but smaller in value.
This gives the number of inversions.
Here's a Python snippet:
def inversions(array):
tree = Tree()
count = 0
for n in reversed(array):
count += tree.insert(n).rank() - 1
return count
Python code
from enum import Enum from collections import deque def inversions(array): tree = Tree() count = 0 for n in reversed(array): count += tree.insert(n).rank() - 1 return count class Color(Enum): RED = 1 BLACK = 2 NIL_KEY = object() def other(direction): if direction == 'left': return 'right' elif direction == 'right': return 'left' else: assert(False) class Node: def __init__(self, color, key, parent, left, right, tree, size): self.color = color self.key = key self.parent = parent self.left = left self.right = right self.tree = tree self.size = size def sexp(self): if self.isNil(): return 'NIL' color = 'R' if self.color == Color.RED else 'B' return f"{color}({self.key}, {self.left}, {self.right})" __str__ = sexp def black_height(self): node = self height = 0 while node is not nil: if node.color == Color.BLACK: height += 1 node = node.parent return height def isRed(self): return self.color == Color.RED def isBlack(self): return self.color == Color.BLACK def isNil(self): return self.key is NIL_KEY def isNotNil(self): return not self.isNil() def __bool__(self): return self.isNotNil() def child(self, direction): if direction == 'left': return self.left elif direction == 'right': return self.right else: assert(False) def set_child(self, direction, child): if direction == 'left': self.left = child elif direction == 'right': self.right = child else: assert(False) __getitem__ = child __setitem__ = set_child def other(self, direction): return self.child(other(direction)) def rotate(self, direction): child = self.other(direction) self[other(direction)] = child[direction] if child[direction]: child[direction].parent = self child.parent = self.parent if not self.parent: self.tree.root = child elif self is self.parent[direction]: self.parent[direction] = child else: self.parent[other(direction)] = child child[direction] = self self.parent = child child.size = self.size self.size = self.left.size + self.right.size + 1 def left_rotate(self): self.rotate('left') def right_rotate(self): self.rotate('right') def transplant(self, other): if not self.parent: self.tree.root = other elif self is self.parent.left: self.parent.left = other else: self.parent.right = other other.parent = self.parent def set(self, parent=None, left=None, right=None, color=None): if color: self.color = color if left is not None: self.left = left if right is not None: self.right = right if parent is not None: self.parent = parent def minimum(self): node = self while node.left: node = node.left return node def select(self, i): node = self while node: rank = node.left.size + 1 if i == rank: return node elif i < rank: node = node.left else: i -= rank node = node.right assert(False) def rank(self): rank = self.left.size + 1 node = self while node.parent: if node == node.parent.right: rank += node.parent.left.size + 1 node = node.parent return rank nil = Node(Color.BLACK, NIL_KEY, None, None, None, None, 0) nil.parent = nil nil.left = nil nil.right = nil class Tree: def __init__(self): self.root = nil def __str__(self): return self.root.sexp() def search(self, key): node = self.root while node: if node.key == key: return node elif key < node.key: node = node.left else: node = node.right return None def rank(self, key): return self.search(key).rank() def nodes(self): items = deque() if self.root: items.append(self.root) while items: node = items.popleft() yield node if node.left: items.append(node.left) if node.right: items.append(node.right) def select(self, i): return self.root.select(i) def insert(self, key): new = Node(Color.RED, key, None, None, None, self, 1) parent = nil node = self.root while node: node.size += 1 parent = node if new.key < node.key: node = node.left else: node = node.right new.parent = parent if not parent: self.root = new elif new.key < parent.key: parent.left = new else: parent.right = new new.set(left=nil, right=nil, color=Color.RED) self.insert_fixup(new) return new def insert_fixup(self, node): while node.parent.isRed(): if node.parent is node.parent.parent.left: direction = 'left' else: direction = 'right' if direction == 'left' or direction == 'right': uncle = node.parent.parent[other(direction)] if uncle.isRed(): node.parent.color = Color.BLACK uncle.color = Color.BLACK node.parent.parent.color = Color.RED node = node.parent.parent else: if node is node.parent[other(direction)]: node = node.parent node.rotate(direction) node.parent.color = Color.BLACK node.parent.parent.color = Color.RED node.parent.parent.rotate(other(direction)) self.root.color = Color.BLACK def delete(self, key): def decrease_ancestor_sizes(node): while node: node.size -= 1 node = node.parent deleted = self.search(key) y = deleted y_original_color = y.color if not deleted.left: decrease_ancestor_sizes(deleted) extra_black = deleted.right deleted.transplant(deleted.right) elif not deleted.right: decrease_ancestor_sizes(deleted) extra_black = deleted.left deleted.transplant(deleted.left) else: y = deleted.right.minimum() y_original_color = y.color extra_black = y.right decrease_ancestor_sizes(y) if y.parent is deleted: extra_black.parent = y else: y.transplant(y.right) y.right = deleted.right y.right.parent = y deleted.transplant(y) y.left = deleted.left y.left.parent = y y.color = deleted.color y.size = y.left.size + y.right.size + 1 if y_original_color == Color.BLACK: self.delete_fixup(extra_black) def delete_fixup(self, node): while node is not self.root and node.isBlack(): if node is node.parent.left: direction = 'left' else: direction = 'right' sibling = node.parent[other(direction)] if sibling.isRed(): sibling.color = Color.BLACK node.parent.color = Color.RED node.parent.rotate(direction) sibling = node.parent[other(direction)] if sibling.left.isBlack() and sibling.right.isBlack(): sibling.color = Color.RED node = node.parent else: if sibling[other(direction)].isBlack(): sibling[direction].color = Color.BLACK sibling.color = Color.RED sibling.rotate(other(direction)) sibling = node.parent[other(direction)] sibling.color = node.parent.color node.parent.color = Color.BLACK sibling[other(direction)].color = Color.BLACK sibling.parent.rotate(direction) node = self.root node.color = Color.BLACK