Exercise 14.1.6

Observe that whenever we reference the $size$ attribute of a node in either OS-SELECT or OS-RANK, we use it only to compute a rank. Accordingly, suppose we store in each node its rank in the subtree of which it is the root. Show how to maintain this information during insertion and deletion. (Remember that those two operations can cause rotations).

First, let's notice that node.rank = node.left.size + 1. Since one is actually a function of the other, we can use that to calculate the new rank. We need to:

Specifically for rotations, referring to Figure 13.2, notice that:

All the changes can be found in the code below.


Python code

from enum import Enum
from collections import deque


class Color(Enum):
    RED = 1
    BLACK = 2


NIL_KEY = object()


def other(direction):
    if direction == 'left':
        return 'right'
    elif direction == 'right':
        return 'left'
    else:
        assert(False)


class Node:
    def __init__(self, color, key, parent, left, right, tree, rank=0):
        self.color = color
        self.key = key
        self.parent = parent
        self.left = left
        self.right = right
        self.tree = tree
        self.rank = rank

    def sexp(self):
        if self.isNil():
            return 'NIL'

        color = 'R' if self.color == Color.RED else 'B'

        return f"{color}({self.key}, r={self.rank}, {self.left}, {self.right})"

    __str__ = sexp

    def black_height(self):
        node = self
        height = 0

        while node is not nil:
            if node.color == Color.BLACK:
                height += 1
            node = node.parent

        return height

    def isRed(self):
        return self.color == Color.RED

    def isBlack(self):
        return self.color == Color.BLACK

    def isNil(self):
        return self.key is NIL_KEY

    def isNotNil(self):
        return not self.isNil()

    def __bool__(self):
        return self.isNotNil()

    def child(self, direction):
        if direction == 'left':
            return self.left
        elif direction == 'right':
            return self.right
        else:
            assert(False)

    def set_child(self, direction, child):
        if direction == 'left':
            self.left = child
        elif direction == 'right':
            self.right = child
        else:
            assert(False)

    __getitem__ = child
    __setitem__ = set_child

    def other(self, direction):
        return self.child(other(direction))

    def rotate(self, direction):
        child = self.other(direction)
        self[other(direction)] = child[direction]

        if child[direction]:
            child[direction].parent = self

        child.parent = self.parent

        if not self.parent:
            self.tree.root = child
        elif self is self.parent[direction]:
            self.parent[direction] = child
        else:
            self.parent[other(direction)] = child

        child[direction] = self
        self.parent = child

        if direction == 'left':
            child.rank += self.rank
        else:
            self.rank -= child.rank

    def depth(self):
        n = 0
        node = self

        while node:
            n += 1
            node = node.parent

        return n

    def left_rotate(self):
        self.rotate('left')

    def right_rotate(self):
        self.rotate('right')

    def transplant(self, other):
        if not self.parent:
            self.tree.root = other
        elif self is self.parent.left:
            self.parent.left = other
        else:
            self.parent.right = other
        other.parent = self.parent

    def set(self, parent=None, left=None, right=None, color=None):
        if color:
            self.color = color
        if left is not None:
            self.left = left
        if right is not None:
            self.right = right
        if parent is not None:
            self.parent = parent

    def minimum(self):
        node = self

        while node.left:
            node = node.left

        return node

    def select(self, i):
        node = self

        while node.rank != i:
            if node.rank < i:
                i -= node.rank
                node = node.right
            else:
                node = node.left

        return node

    def rank_in_tree(self):
        rank = self.rank
        node = self

        while node.parent:
            if node.parent.right is node:
                rank += node.parent.rank
            node = node.parent

        return rank


nil = Node(Color.BLACK, NIL_KEY, None, None, None, None, -1)
nil.parent = nil
nil.left = nil
nil.right = nil


class Tree:
    def __init__(self):
        self.root = nil

    def __str__(self):
        return self.root.sexp()

    def display(self):
        height = max([node.depth() for node in self.nodes()])

        w = 7
        p = 2

        level = 0
        nodes = [self.root]
        while level < height:
            cells = (height - 1) ** 2
            print(" " * ((height - level) * 5), (" " * p).join((f"{node.key:>d} / {node.rank:>d}" if node else "  NIL  ") for node in nodes))
            next_level = []
            for node in nodes:
                next_level += [node.left, node.right]
            level += 1
            nodes = next_level

        print(f"-- {height} ------")

    def search(self, key):
        node = self.root

        while node:
            if node.key == key:
                return node
            elif key < node.key:
                node = node.left
            else:
                node = node.right

        return None

    def nodes(self):
        items = deque()

        if self.root:
            items.append(self.root)

        while items:
            node = items.popleft()

            yield node

            if node.left:
                items.append(node.left)

            if node.right:
                items.append(node.right)

    def select(self, i):
        return self.root.select(i)

    def insert(self, key):
        new = Node(Color.RED, key, None, None, None, self, 1)
        parent = nil
        node = self.root
        while node:
            parent = node
            if new.key < node.key:
                node.rank += 1
                node = node.left
            else:
                node = node.right

        new.parent = parent

        if not parent:
            self.root = new
        elif new.key < parent.key:
            parent.left = new
        else:
            parent.right = new

        new.set(left=nil, right=nil, color=Color.RED)

        self.insert_fixup(new)

    def insert_fixup(self, node):
        while node.parent.isRed():
            if node.parent is node.parent.parent.left:
                direction = 'left'
            else:
                direction = 'right'

            if direction == 'left' or direction == 'right':
                uncle = node.parent.parent[other(direction)]
                if uncle.isRed():
                    node.parent.color = Color.BLACK
                    uncle.color = Color.BLACK
                    node.parent.parent.color = Color.RED
                    node = node.parent.parent
                else:
                    if node is node.parent[other(direction)]:
                        node = node.parent
                        node.rotate(direction)
                    node.parent.color = Color.BLACK
                    node.parent.parent.color = Color.RED
                    node.parent.parent.rotate(other(direction))

        self.root.color = Color.BLACK

    def delete(self, key):
        def decrease_ancestor_ranks(node):
            while node:
                if node.parent and node.parent.left is node:
                    node.parent.rank -= 1
                node = node.parent

        deleted = self.search(key)
        y = deleted
        y_original_color = y.color

        if not deleted.left:
            decrease_ancestor_ranks(deleted)
            extra_black = deleted.right
            deleted.transplant(deleted.right)
        elif not deleted.right:
            decrease_ancestor_ranks(deleted)
            extra_black = deleted.left
            deleted.transplant(deleted.left)
        else:
            y = deleted.right.minimum()
            y_original_color = y.color
            extra_black = y.right

            decrease_ancestor_ranks(y)

            if y.parent is deleted:
                extra_black.parent = y
            else:
                y.transplant(y.right)
                y.right = deleted.right
                y.right.parent = y

            deleted.transplant(y)
            y.left = deleted.left
            y.left.parent = y
            y.color = deleted.color
            y.rank = deleted.rank

        if y_original_color == Color.BLACK:
            self.delete_fixup(extra_black)

    def delete_fixup(self, node):
        while node is not self.root and node.isBlack():
            if node is node.parent.left:
                direction = 'left'
            else:
                direction = 'right'

            sibling = node.parent[other(direction)]

            if sibling.isRed():
                sibling.color = Color.BLACK
                node.parent.color = Color.RED
                node.parent.rotate(direction)
                sibling = node.parent[other(direction)]

            if sibling.left.isBlack() and sibling.right.isBlack():
                sibling.color = Color.RED
                node = node.parent
            else:
                if sibling[other(direction)].isBlack():
                    sibling[direction].color = Color.BLACK
                    sibling.color = Color.RED
                    sibling.rotate(other(direction))
                    sibling = node.parent[other(direction)]

                sibling.color = node.parent.color
                node.parent.color = Color.BLACK
                sibling[other(direction)].color = Color.BLACK
                sibling.parent.rotate(direction)
                node = self.root

        node.color = Color.BLACK