Exercise 14.1.5
Given an element $x$ in an $n$-node order-statistic tree and a natural number $i$, how can we determine the $i$th successor of $x$ in the linear order of the tree in $\O(\lg n)$ time?
Here's the code:
def nth_successor(node, i):
while i > node.right.size:
if node.parent.left is node:
i -= 1 + node.right.size
node = node.parent
else:
i += 1 + node.left.size
node = node.parent
if i == 0:
return node
return node.right.select(i)
The code first determines whether the successor is in the right subtree, or
whether it's somewhere along the parents. It navigates the tree up until it
identifies a node, which contains the $i$-th successor in its right subtree,
while updating $i$. Once it identifies one, it uses SELECT
to find the node
with the specific rank.
The time is $\O(\lg n)$, because the height of the three is $\O(\lg n)$, and the
algorithm traverses that length at most twice – once on the way up, and then
once for SELECT
.
Python code
from enum import Enum from collections import deque class Color(Enum): RED = 1 BLACK = 2 NIL_KEY = object() def other(direction): if direction == 'left': return 'right' elif direction == 'right': return 'left' else: assert(False) class Node: def __init__(self, color, key, parent, left, right, tree, size): self.color = color self.key = key self.parent = parent self.left = left self.right = right self.tree = tree self.size = size def sexp(self): if self.isNil(): return 'NIL' color = 'R' if self.color == Color.RED else 'B' return f"{color}({self.key}, {self.left}, {self.right})" __str__ = sexp def black_height(self): node = self height = 0 while node is not nil: if node.color == Color.BLACK: height += 1 node = node.parent return height def isRed(self): return self.color == Color.RED def isBlack(self): return self.color == Color.BLACK def isNil(self): return self.key is NIL_KEY def isNotNil(self): return not self.isNil() def __bool__(self): return self.isNotNil() def child(self, direction): if direction == 'left': return self.left elif direction == 'right': return self.right else: assert(False) def set_child(self, direction, child): if direction == 'left': self.left = child elif direction == 'right': self.right = child else: assert(False) __getitem__ = child __setitem__ = set_child def other(self, direction): return self.child(other(direction)) def rotate(self, direction): child = self.other(direction) self[other(direction)] = child[direction] if child[direction]: child[direction].parent = self child.parent = self.parent if not self.parent: self.tree.root = child elif self is self.parent[direction]: self.parent[direction] = child else: self.parent[other(direction)] = child child[direction] = self self.parent = child child.size = self.size self.size = self.left.size + self.right.size + 1 def left_rotate(self): self.rotate('left') def right_rotate(self): self.rotate('right') def transplant(self, other): if not self.parent: self.tree.root = other elif self is self.parent.left: self.parent.left = other else: self.parent.right = other other.parent = self.parent def set(self, parent=None, left=None, right=None, color=None): if color: self.color = color if left is not None: self.left = left if right is not None: self.right = right if parent is not None: self.parent = parent def minimum(self): node = self while node.left: node = node.left return node def select(self, i): node = self while node: rank = node.left.size + 1 if i == rank: return node elif i < rank: node = node.left else: i -= rank node = node.right assert(False) def rank(self): rank = self.left.size + 1 node = self while node.parent: if node == node.parent.right: rank += node.parent.left.size + 1 node = node.parent return rank def key_rank(self, key): if self.key == key: return self.left.size + 1 elif key < self.key: return self.left.key_rank(key) else: return self.left.size + 1 + self.right.key_rank(key) def nth_successor(self, n): node = self while n > node.right.size: if node.parent.left is node: n -= 1 + node.right.size node = node.parent else: n += 1 + node.left.size node = node.parent if n == 0: return node return node.right.select(n) nil = Node(Color.BLACK, NIL_KEY, None, None, None, None, 0) nil.parent = nil nil.left = nil nil.right = nil class Tree: def __init__(self): self.root = nil def __str__(self): return self.root.sexp() def search(self, key): node = self.root while node: if node.key == key: return node elif key < node.key: node = node.left else: node = node.right return None def key_rank(self, key): return self.root.key_rank(key) def nodes(self): items = deque() if self.root: items.append(self.root) while items: node = items.popleft() yield node if node.left: items.append(node.left) if node.right: items.append(node.right) def select(self, i): return self.root.select(i) def insert(self, key): new = Node(Color.RED, key, None, None, None, self, 1) parent = nil node = self.root while node: node.size += 1 parent = node if new.key < node.key: node = node.left else: node = node.right new.parent = parent if not parent: self.root = new elif new.key < parent.key: parent.left = new else: parent.right = new new.set(left=nil, right=nil, color=Color.RED) self.insert_fixup(new) def insert_fixup(self, node): while node.parent.isRed(): if node.parent is node.parent.parent.left: direction = 'left' else: direction = 'right' if direction == 'left' or direction == 'right': uncle = node.parent.parent[other(direction)] if uncle.isRed(): node.parent.color = Color.BLACK uncle.color = Color.BLACK node.parent.parent.color = Color.RED node = node.parent.parent else: if node is node.parent[other(direction)]: node = node.parent node.rotate(direction) node.parent.color = Color.BLACK node.parent.parent.color = Color.RED node.parent.parent.rotate(other(direction)) self.root.color = Color.BLACK def delete(self, key): def decrease_ancestor_sizes(node): while node: node.size -= 1 node = node.parent deleted = self.search(key) y = deleted y_original_color = y.color if not deleted.left: decrease_ancestor_sizes(deleted) extra_black = deleted.right deleted.transplant(deleted.right) elif not deleted.right: decrease_ancestor_sizes(deleted) extra_black = deleted.left deleted.transplant(deleted.left) else: y = deleted.right.minimum() y_original_color = y.color extra_black = y.right decrease_ancestor_sizes(y) if y.parent is deleted: extra_black.parent = y else: y.transplant(y.right) y.right = deleted.right y.right.parent = y deleted.transplant(y) y.left = deleted.left y.left.parent = y y.color = deleted.color y.size = y.left.size + y.right.size + 1 if y_original_color == Color.BLACK: self.delete_fixup(extra_black) def delete_fixup(self, node): while node is not self.root and node.isBlack(): if node is node.parent.left: direction = 'left' else: direction = 'right' sibling = node.parent[other(direction)] if sibling.isRed(): sibling.color = Color.BLACK node.parent.color = Color.RED node.parent.rotate(direction) sibling = node.parent[other(direction)] if sibling.left.isBlack() and sibling.right.isBlack(): sibling.color = Color.RED node = node.parent else: if sibling[other(direction)].isBlack(): sibling[direction].color = Color.BLACK sibling.color = Color.RED sibling.rotate(other(direction)) sibling = node.parent[other(direction)] sibling.color = node.parent.color node.parent.color = Color.BLACK sibling[other(direction)].color = Color.BLACK sibling.parent.rotate(direction) node = self.root node.color = Color.BLACK