Exercise 4.2.6
How quickly can you multiply a $kn \times n$ matrix by an $n \times kn$ matrix, using Strassen's algorithm as a subroutine? Answer the same question with the order of the input matrices reversed.
$(kn \times n)(n \times kn)$ produces a $kn \times kn$ matrix. This produces $k^2$ multiplications of $n \times n$ matrices.
$(n \times kn)(kn \times n)$ produces an $n \times n$ matrix. This produces $k$ multiplications and $k - 1$ additions.