Problem 3.3
Ordering by asymptotic growth rates
Rank the following functions by order of growth; that is, find an arrangement $g_1, g_2, \ldots , g_{30}$ of the functions $g_1 = \Omega(g_2), g_2 = \Omega(g_3), \ldots, g_{29} = \Omega(g_{30}) $. Partition your list into equivalence classes such that functions $f(n)$ and $g(n)$ are in the same class if and only if $f(n) = \Theta(g(n))$.
Give an example of a single nonnegative function $f(n)$ such that for all functions $g_i(n)$ in part (1), $f(n)$ is neither $O(g_i(n))$ nor $\Omega(g_i(n))$.
$\lg(\lg^*n)$ $2^{\lg^*n}$ $(\sqrt{2})^{\lg{n}}$ $n^2$ $n!$ $(\lg{n})!$ $(\frac{3}{2})^n$ $n^3$ $\lg^2{n}$ $\lg(n!)$ $2^{2^n}$ $n^{1/\lg{n}}$ $\ln{\ln{n}}$ $\lg^*n$ $n \cdot 2^n$ $n^{\lg\lg{n}}$ $\ln{n}$ $1$ $2^{\lg{n}}$ $(\lg{n})^{\lg{n}}$ $e^n$ $4^{\lg{n}}$ $(n + 1)!$ $\sqrt{\lg{n}}$ $\lg^*(\lg{n})$ $2^{\sqrt{2\lg{n}}}$ $n$ $2^n$ $n\lg{n}$ $2^{2^{n + 1}}$
Some facts:
$$ (\sqrt{2})^{\lg{n}} = \sqrt{n} $$ $$ \sqrt{2}^{\lg{n}} = 2^{1/2\lg{n}} = 2^{\lg{\sqrt{n}}} = \sqrt{n} $$ $$ n! < n^n = 2^{\lg{n^n}} = 2^{n\lg{n}} $$ $$ n^{1/\lg{n}} = n^{\log_n{2}} = 2$$ $$ n^{\lg{\lg{n}}} = (2^{\lg{n}})^{\lg\lg{n}} = (2^{\lg\lg{n}})^{\lg{n}} = (\lg{n})^{\lg{n}} $$ $$ \lg^2{n} = 2^{\lg{\lg^2{n}}} = o(2^{\sqrt{2\lg{n}}}) $$
The order is thus:
- $1 = n^{1/\lg{n}}$
- $\lg(\lg^*n)$
- $\lg^{*}n \simeq \lg^{*}(\lg{n})$
- $2^{\lg^*n}$
- $\ln{\ln{n}}$
- $\sqrt{\lg{n}}$
- $\ln{n}$
- $\lg^2{n}$
- $2^{\sqrt{2\lg{n}}}$
- $(\sqrt{2})^{\lg{n}}$
- $n = 2^{\lg{n}}$
- $n\lg{n} \simeq \lg(n!)$
- $n^2 = 1 4^{\lg{n}}$
- $n^3$
- $n^{\lg\lg{n}} = (\lg{n})^{\lg{n}}$
- $(\frac{3}{2})^n$
- $2^n$
- $n \cdot 2^n$
- $e^n$
- $n!$
- $(n + 1)!$
- $2^{2^n}$
- $2^{2^{n + 1}}$
The asked function can be:
$$ 2^{2^{(n + 1)\sin{x}}} $$